Common for the following Specialization:
1. VLSI
2. VLSI Design
3. VLSI System Design
4. VLSI & Micro Electronics

M. Tech - I YEAR I SEMESTER

COURSE STRUCTURE

<table>
<thead>
<tr>
<th>S.NO</th>
<th>Name of the Subject</th>
<th>L</th>
<th>P</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1. VLSI Technology and Design</td>
<td>4</td>
<td>-</td>
<td>3</td>
</tr>
<tr>
<td>2</td>
<td>2. CMOS Analog IC Design</td>
<td>4</td>
<td>-</td>
<td>3</td>
</tr>
<tr>
<td>3</td>
<td>3. CPLD and FPGA Architectures and Applications</td>
<td>4</td>
<td>-</td>
<td>3</td>
</tr>
<tr>
<td>4</td>
<td>4. CMOS Digital IC Design</td>
<td>4</td>
<td>-</td>
<td>3</td>
</tr>
<tr>
<td>5</td>
<td>Elective I</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1. Digital System Design</td>
<td>4</td>
<td>-</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>2. Advanced Operating Systems</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>3. Soft Computing Techniques</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>Elective II</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1. Digital Design using HDL</td>
<td>4</td>
<td>-</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>2. Advanced Computer Architecture</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>3. Hardware Software Co-Design</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>Laboratory</td>
<td></td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>1. VLSI Laboratory-1</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
M. Tech- I YEAR I SEMESTER

VLSI TECHNOLOGY AND DESIGN

UNIT-I:

VLSI Technology: Fundamentals and applications, IC production process, semiconductor processes, design rules and process parameters, layout techniques and process parameters.
VLSI Design: Electronic design automation concept, ASIC and FPGA design flows, SOC designs, design technologies: combinational design techniques, sequential design techniques, state machine logic design techniques and design issues.

UNIT-II:

CMOS VLSI Design: MOS Technology and fabrication process of pMOS, nMOS, CMOS and BiCMOS technologies, comparison of different processes.
Building Blocks of a VLSI circuit: Computer architecture, memory architectures, communication interfaces, mixed signal interfaces.
VLSI Design Issues: Design process, design for testability, technology options, power calculations, package selection, clock mechanisms, mixed signal design.

UNIT-III:

Basic electrical properties of MOS and BiCMOS circuits, MOS and BiCMOS circuit design processes, Basic circuit concepts, scaling of MOS circuits-qualitative and quantitative analysis with proper illustrations and necessary derivations of expressions.

UNIT-IV:

Subsystem Design and Layout: Some architectural issues, switch logic, gate logic, examples of structured design (combinational logic), some clocked sequential circuits, other system considerations.
Subsystem Design Processes: Some general considerations and an illustration of design processes, design of an ALU subsystem.
UNIT-V:

Floor Planning: Introduction, Floor planning methods, off-chip connections.

Architecture Design: Introduction, Register-Transfer design, high-level synthesis, architectures for low power, architecture testing.

Chip Design: Introduction and design methodologies.

TEXT BOOKS:

REFERENCE BOOKS:

M. Tech- I YEAR I SEMESTER

CMOS ANALOG IC DESIGN

UNIT -I: MOS Devices and Modeling

UNIT -II: Analog CMOS Sub-Circuits

MOS Switch, MOS Diode, MOS Active Resistor, Current Sinks and Sources, Current Mirrors-Current mirror with Beta Helper, Degeneration, Cascode current Mirror and Wilson Current Mirror, Current and Voltage References, Band gap Reference.

UNIT -III: CMOS Amplifiers

Inverters, Differential Amplifiers, Cascode Amplifiers, Current Amplifiers, Output Amplifiers, High Gain Amplifiers Architectures.

UNIT -IV: CMOS Operational Amplifiers

UNIT -V: Comparators

Characterization of Comparator, Two-Stage, Open-Loop Comparators, Other Open-Loop Comparators, Improving the Performance of Open-Loop Comparators, Discrete-Time Comparators.

TEXT BOOKS:

REFERENCE BOOKS:
3. CMOS: Circuit Design, Layout and Simulation- Baker, Li and Boyce, PHI.
M. Tech- I YEAR I SEMESTER
CPLD AND FPGA ARCHITECTURES AND APPLICATIONS

UNIT-I: Introduction to Programmable Logic Devices

UNIT-II: Field Programmable Gate Arrays

Organization of FPGAs, FPGA Programming Technologies, Programmable Logic Block Architectures, Programmable Interconnects, Programmable I/O blocks in FPGAs, Dedicated Specialized Components of FPGAs, Applications of FPGAs.

UNIT-III: SRAM Programmable FPGAs

UNIT-IV: Anti-Fuse Programmed FPGAs

Introduction, Programming Technology, Device Architecture, The Actel ACT1, ACT2 and ACT3 Architectures.

UNIT-V: Design Applications

General Design Issues, Counter Examples, A Fast Video Controller, A Position Tracker for a Robot Manipulator, A Fast DMA Controller, Designing Counters with ACT devices, Designing Adders and Accumulators with the ACT Architecture.

TEXT BOOKS:

REFERENCE BOOKS:
1. Field Programmable Gate Arrays - John V. Oldfield, Richard C. Dorf, Wiley India.

M. Tech- I YEAR I SEMESTER
CMOS DIGITAL IC DESIGN

UNIT-I: MOS Design
Pseudo NMOS Logic – Inverter, Inverter threshold voltage, Output high voltage, Output Low voltage, Gain at gate threshold voltage, Transient response, Rise time, Fall time, Pseudo NMOS logic gates, Transistor equivalency, CMOS Inverter logic.

UNIT-II: Combinational MOS Logic Circuits:
MOS logic circuits with NMOS loads, Primitive CMOS logic gates – NOR & NAND gate, Complex Logic circuits design – Realizing Boolean expressions using NMOS gates and CMOS gates, AOI and OIA gates, CMOS full adder, CMOS transmission gates, Designing with Transmission gates.

UNIT-III: Sequential MOS Logic Circuits
Behaviour of bistable elements, SR Latch, Clocked latch and flip flop circuits, CMOS D latch and edge triggered flip-flop.

UNIT-IV: Dynamic Logic Circuits
Basic principle, Voltage Bootstrapping, Synchronous dynamic pass transistor circuits, Dynamic CMOS transmission gate logic, High performance Dynamic CMOS circuits.

UNIT-V: Semiconductor Memories
Types, RAM array organization, DRAM – Types, Operation, Leakage currents in DRAM cell and refresh operation, SRAM operation Leakage currents in SRAM cells, Flash Memory- NOR flash and NAND flash.

TEXT BOOKS:

REFERENCE BOOKS:
M. Tech- I YEAR I SEMESTER

(Elective-I)

DIGITAL SYSTEM DESIGN

UNIT-I: Minimization Procedures and CAMP Algorithm

Review on minimization of switching functions using tabular methods, k-map, QM algorithm, CAMP-I algorithm, Phase-I: Determination of Adjacencies, DA, CSC, SSMs and EPCs, CAMP-I algorithm, Phase-II: Passport checking, Determination of SPC, CAMP-II algorithm: Determination of solution cube, Cube based operations, determination of selected cubes are wholly within the given switching function or not, Introduction to cube based algorithms.

UNIT-II: PLA Design, PLA Minimization and Folding Algorithms

Introduction to PLDs, basic configurations and advantages of PLDs, PLA-Introduction, Block diagram of PLA, size of PLA, PLA design aspects, PLA minimization algorithm(IISc algorithm), PLA folding algorithm(COMPACT algorithm)-Illustration of algorithms with suitable examples.

UNIT-III: Design of Large Scale Digital Systems

Algorithmic state machine charts-Introduction, Derivation of SM Charts, Realization of SM Chart, control implementation, control unit design, data processor design, ROM design, PAL design aspects, digital system design approaches using CPLDs, FPGAs and ASICs.

UNIT-IV: Fault Diagnosis in Combinational Circuits

Faults classes and models, fault diagnosis and testing, fault detection test, test generation, testing process, obtaining a minimal complete test set, circuit under test methods- Path sensitization method, Boolean difference method, properties of Boolean differences, Kohavi algorithm, faults in PLAs, DFT schemes, built in self-test.

UNIT-V: Fault Diagnosis in Sequential Circuits

Fault detection and location in sequential circuits, circuit test approach, initial state identification, Haming experiments, synchronizing experiments, machine identification, distinguishing experiment, adaptive distinguishing experiments.

TEXT BOOKS:
1. Logic Design Theory-N. N. Biswas, PHI
3. Digital system Design using PLDd-Lala

REFERENCE BOOKS:

UNIT-I: Introduction to Operating Systems

Overview of computer system hardware, Instruction execution, I/O function, Interrupts, Memory hierarchy, I/O Communication techniques, Operating system objectives and functions, Evaluation of operating System

UNIT-II: Introduction to UNIX and LINUX

Basic Commands & Command Arguments, Standard Input, Output, Input / Output Redirection, Filters and Editors, Shells and Operations

UNIT –III:

Inter Process Communication: Introduction, File and record locking, Client – Server example, Pipes, FIFOs, Streams & Messages, Name Spaces, Systems V IPC, Message queues, Semaphores, Shared Memory, Sockets & TLI.

UNIT –IV:

Introduction to Distributed Systems:

Goals of distributed system, Hardware and software concepts, Design issues.

Communication in Distributed Systems:

Layered protocols, ATM networks, Client - Server model, Remote procedure call and Group communication.

UNIT –V:

Synchronization in Distributed Systems:

Clock synchronization, Mutual exclusion, E-tech algorithms, Bully algorithm, Ring algorithm, Atomic transactions

Deadlocks:

Dead lock in distributed systems, Distributed dead lock prevention and distributed dead lock detection.
TEXT BOOKS:

1. The Design of the UNIX Operating Systems – Maurice J. Bach, 1986, PHI.
2. Distributed Operating System - Andrew. S. Tanenbaum, 1994, PHI.

REFERENCE BOOKS:

M. Tech- I YEAR I SEMESTER

(ELECTIVE -I)

SOFTWARE COMPUTING TECHNIQUES

UNIT –I:

Introduction:

Approaches to intelligent control, Architecture for intelligent control, Symbolic reasoning system, Rule-based systems, the AI approach, Knowledge representation - Expert systems.

UNIT –II:

Artificial Neural Networks:

Concept of Artificial Neural Networks and its basic mathematical model, McCulloch-Pitts neuron model, simple perceptron, Adaline and Madaline, Feed-forward Multilayer Perceptron, Learning and Training the neural network, Data Processing: Scaling, Fourier transformation, principal-component analysis and wavelet transformations, Hopfield network, Self-organizing network and Recurrent network, Neural Network based controller.

UNIT –III:

Fuzzy Logic System:

Introduction to crisp sets and fuzzy sets, basic fuzzy set operation and approximate reasoning, Introduction to fuzzy logic modeling and control, Fuzzification, inferencing and defuzzification, Fuzzy knowledge and rule bases, Fuzzy modeling and control schemes for nonlinear systems, Self-organizing fuzzy logic control, Fuzzy logic control for nonlinear time delay system.

UNIT –IV:

Genetic Algorithm:

Basic concept of Genetic algorithm and detail algorithmic steps, Adjustment of free parameters, Solution of typical control problems using genetic algorithm, Concept on some other search techniques like Tabu search and anD-colony search techniques for solving optimization problems.
UNIT –V:

Applications:

TEXT BOOKS:

REFERENCE BOOKS:

UNIT-I:

Digital Logic Design using VHDL

Introduction, designing with VHDL, design entry methods, logic synthesis, entities, architecture, packages and configurations, types of models: dataflow, behavioral, structural, signals vs. variables, generics, data types, concurrent vs. sequential statements, loops and program controls.

Digital Logic Design using Verilog HDL

Introduction, Verilog Data types and Operators, Binary data manipulation, Combinational and Sequential logic design, Structural Models of Combinational Logic, Logic Simulation, Design Verification and Test Methodology, Propagation Delay, Truth Table models using Verilog.

UNIT-II:

Combinational Logic Circuit Design using VHDL

Sequential Logic Circuit Design using VHDL

Flip-flops, registers & counters, synchronous sequential circuits: Basic design steps, Mealy State model, Design of FSM using CAD tools, Serial Adder Example, State Minimization, Design of Counter using sequential Circuit approach.

UNIT-III: Digital Logic Circuit Design Examples using Verilog HDL

Behavioral modeling, Data types, Boolean-Equation-Based behavioral models of combinational logics, Propagation delay and continuous assignments, latches and level-sensitive circuits in Verilog, Cyclic behavioral models of flip-flops and latches and Edge detection, comparison of styles for behavioral model; Behavioral model, Multiplexers, Encoders and Decoders, Counters, Shift Registers, Register files, Dataflow models of a linear feedback shift register, Machines with multi cycle operations, ASM and ASMD charts for behavioral modeling, Design examples, Keypad scanner and encoder.

UNIT-IV: Synthesis of Digital Logic Circuit Design

Introduction to Synthesis, Synthesis of combinational logic, Synthesis of sequential logic with latches and flip-flops, Synthesis of Explicit and Implicit State Machines, Registers and counters.
UNIT-V: Testing of Digital Logic Circuits and CAD Tools

Testing of logic circuits, fault model, complexity of a test set, path-sensitization, circuits with tree structure, random tests, testing of sequential circuits, built in self test, printed circuit boards, computer aided design tools, synthesis, physical design.

TEXT BOOKS:

REFERENCE BOOKS:

M. Tech- I YEAR I SEMESTER
(ELECTIVE-II)

ADVANCED COMPUTER ARCHITECTURE

Course Objectives:
- To analyze and evaluate the performance metrics of processor and system architectures
- Understand the impact of architectural elements on processor/system performance
- To understand and apply trends/tradeoffs in modern architectural practice to Systems

Unit 1: Performance Analysis of Programs and Systems

Unit 2: Advanced architecture of Processors
Arithmetic elements, memory architectures and hierarchy, caching. Paging and Virtual memory. Memory analysis of programs

Unit 3: MultiProcessor Architectures
Multi-core, Multi-processor architectures and their use in real life applications. Homogenous and heterogenous multi processors. Bus and memory sharing. Arbitration and scheduling. Integration of co-processors such as GPU, Video and DSP.

Unit 4: System and SOC Architecture
SOC/NOC Architectures. Survey of current practices and trends.

Unit 5: Advanced System Architectures
Mobile systems, data centers, storage networks, software defined networks, web and network appliances. telecommunication systems. TCO/TCM metrics of system architectures. Impact of big data.

Learning Outcomes:
- Understand the principles and metrics of Architecture design.
- Apply concepts of architecture to a given system/problem
- Understand trends and make tradeoffs in a given context

References:
1. Instructor reference material
M. Tech- I YEAR I SEMESTER

(Elective-II)
HARDWARE SOFTWARE CO-DESIGN

UNIT-I:
Co- Design Issues
Co- Design Models, Architectures, Languages, A Generic Co-design Methodology.

Co- Synthesis Algorithms
Hardware software synthesis algorithms: hardware – software partitioning distributed system co-synthesis.

UNIT-II:
Prototyping and Emulation
Prototyping and emulation techniques, prototyping and emulation environments, future developments in emulation and prototyping architecture specialization techniques, system communication infrastructure

Target Architectures
Architecture Specialization techniques, System Communication infrastructure, Target Architecture and Application System classes, Architecture for control dominated systems (8051-Architectures for High performance control), Architecture for Data dominated systems (ADSP21060, TMS320C60), Mixed Systems.

UNIT-III:
Compilation Techniques and Tools for Embedded Processor Architectures
Modern embedded architectures, embedded software development needs, compilation technologies, practical consideration in a compiler development environment.
UNIT-IV:

Design Specification and Verification

Design, co-design, the co-design computational model, concurrency coordinating concurrent computations, interfacing components, design verification, implementation verification, verification tools, interface verification.

UNIT-V:

Languages for System-Level Specification and Design-I

System-level specification, design representation for system level synthesis, system level specification languages.

Languages for System-Level Specification and Design-II

Heterogeneous specifications and multi language co-simulation, the cosyma system and lycos system.

TEXT BOOKS:

REFERENCE BOOKS:

M. Tech- I YEAR I SEMESTER

VLSI LABORATORY-1

PART-A: VLSI Lab (Front-end Environment)

- The students are required to design the logic circuit to perform the following experiments using necessary simulator (Xilinx ISE Simulator/ Mentor Graphics Questa Simulator) to verify the logical/functional operation and to perform the analysis with appropriate synthesizer (Xilinx ISE Synthesizer/Mentor Graphics Precision RTL) and then verify the implemented logic with different hardware modules/kits (CPLD/FPGA kits).

- The students are required to acquire the knowledge in both the Platforms (Xilinx and Mentor graphics) by perform at least SIX experiments on each Platform.

List of Experiments:

1. Realization of Logic gates.
2. Parity Encoder.
3. Random Counter
4. Synchronous RAM.
5. ALU.
6. UART Model.
8. Traffic Light Controller using Sequential Logic circuits
10. Finite State Machine (FSM) based logic circuit.
PART-A: VLSI Lab (Back-end Environment)

- The students are required to design and implement the Layout of the following experiments of any FOUR using CMOS 130nm Technology with Mentor Graphics Tool.

List of Experiments:

1. Inverter Characteristics.
2. Full Adder.
3. RS-Latch, D-Latch and Clock Divider.
4. Synchronous Counter and Asynchronous Counter.
5. Static and Dynamic RAM.
6. ROM

Lab Requirements:

Hardware: Personal Computer with necessary peripherals, configuration and operating System and relevant VLSI (CPLD/FPGA) hardware Kits.
